Tuesday, 19 September 2017

Autocorrelação função movimento média processo


2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos auto-regressivos ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt desviar N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de ordem 1, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observamos que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não nulas são: Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico de série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, a ACF da amostra não corresponde exactamente ao padrão teórico. ACF para Modelos Gerais MA (q) Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Restringimos modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto 1 10,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de RA diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags de ACF para MA (1) com theta1 0.7 lags0: 10 cria uma variável chamada lags que varia de 0 a 10. plot (Lags, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos de 1 a 10. O parâmetro ylab marca o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer a média 10. Padrões de simulação significam 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (lags, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, main Simulado MA (2) Series) acf (x, xlimc (1,10), x2, MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo MA reversível é aquele que pode ser escrito como um modelo de ordem infinita AR que converge de modo que os coeficientes AR convergem para 0 à medida que nos movemos infinitamente para trás no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Em seguida, substitui-se a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z pontos) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertible. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos voltando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que um requisito para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. NavigationPurpose: Check Randomness Os gráficos de autocorrelação (Box e Jenkins, pp. 28-32) são uma ferramenta comumente usada para verificar a aleatoriedade em um conjunto de dados. Esta aleatoriedade é determinada por computar autocorrelações para valores de dados em diferentes intervalos de tempo. Se for aleatória, tais autocorrelações devem ser próximas de zero para qualquer e todas as separações de tempo-atraso. Se não for aleatório, então uma ou mais das autocorrelações serão significativamente não-zero. Além disso, as parcelas de autocorrelação são usadas na fase de identificação do modelo para modelos auto-regressivos, modelos de séries temporais móveis de Box-Jenkins. Autocorrelação é apenas uma medida de aleatoriedade Observe que não correlacionado não significa necessariamente aleatório. Os dados que possuem autocorrelação significativa não são aleatórios. No entanto, os dados que não mostram autocorrelação significativa ainda podem exibir não aleatoriedade de outras maneiras. Autocorrelação é apenas uma medida de aleatoriedade. No contexto da validação do modelo (que é o tipo primário de aleatoriedade que discutimos no Manual), a verificação da autocorrelação é tipicamente um teste suficiente de aleatoriedade, uma vez que os resíduos de um modelo de ajuste inadequado tendem a exibir aleatoriedade não sutil. No entanto, algumas aplicações requerem uma determinação mais rigorosa da aleatoriedade. Nestes casos, uma bateria de testes, que podem incluir a verificação de autocorrelação, são aplicados desde que os dados podem ser não-aleatórios de muitas maneiras diferentes e muitas vezes sutis. Um exemplo de onde uma verificação mais rigorosa para aleatoriedade é necessária seria testando geradores de números aleatórios. Amostra Plot: autocorrelações devem ser perto de zero para aleatoriedade. Esse não é o caso neste exemplo e, portanto, a hipótese de aleatoriedade falha. Esse gráfico de autocorrelação de amostra mostra que a série de tempo não é aleatória, mas tem um alto grau de autocorrelação entre observações adjacentes e quase adjacentes. Definição: r (h) versus h As parcelas de autocorrelação são formadas por Eixo vertical: Coeficiente de autocorrelação onde C h é a função de autocovariância e C 0 é a função de variância Observe que R h está entre -1 e 1. Note que algumas fontes podem usar o Seguinte fórmula para a função autocovariância Embora esta definição tenha menos viés, a formulação (1 N) tem algumas propriedades estatísticas desejáveis ​​e é a forma mais comumente utilizada na literatura estatística. Veja as páginas 20 e 49-50 em Chatfield para detalhes. Eixo horizontal: Time lag h (h 1, 2, 3.) A linha acima também contém várias linhas de referência horizontais. A linha do meio está em zero. As outras quatro linhas são 95 e 99 faixas de confiança. Observe que existem duas fórmulas distintas para gerar as bandas de confiança. Se o gráfico de autocorrelação estiver sendo usado para testar a aleatoriedade (ou seja, não há dependência temporal nos dados), recomenda-se a seguinte fórmula: onde N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa ) É o nível de significância. Neste caso, as bandas de confiança têm uma largura fixa que depende do tamanho da amostra. Esta é a fórmula que foi usada para gerar as faixas de confiança no gráfico acima. Os gráficos de autocorrelação também são usados ​​na fase de identificação do modelo para a montagem de modelos ARIMA. Neste caso, um modelo de média móvel é assumido para os dados e devem ser geradas as seguintes faixas de confiança: onde k é o atraso, N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa) é O nível de significância. Neste caso, as faixas de confiança aumentam à medida que o atraso aumenta. O gráfico de autocorrelação pode fornecer respostas para as seguintes perguntas: Os dados são aleatórios É uma observação relacionada a uma observação adjacente É uma observação relacionada a uma observação duas vezes removido (etc.) É a série de tempo observada ruído branco A série temporal observada é sinusoidal A série de tempo observada é autorregressiva O que é um modelo apropriado para as séries temporais observadas O modelo é válido e suficiente A fórmula é ssqrt válida Importância: Garanta a validade das conclusões de engenharia A aleatoriedade (juntamente com o modelo fixo, a variação fixa e a distribuição fixa) Uma das quatro suposições que tipicamente estão subjacentes a todos os processos de medição. A hipótese de aleatoriedade é extremamente importante pelas três razões a seguir: A maioria dos testes estatísticos padrão depende da aleatoriedade. A validade das conclusões do teste está diretamente ligada à validade do pressuposto de aleatoriedade. Muitas fórmulas estatísticas comumente utilizadas dependem da suposição aleatória, sendo a fórmula mais comum a fórmula para determinar o desvio padrão da média da amostra: em que s é o desvio padrão dos dados. Embora fortemente usados, os resultados de usar esta fórmula são de nenhum valor a menos que a suposição de aleatoriedade se mantenha. Para dados univariados, o modelo padrão é Se os dados não são aleatórios, este modelo é incorreto e inválido, e as estimativas para os parâmetros (como a constante) tornam-se absurdas e inválidas. Em suma, se o analista não verificar a aleatoriedade, então a validade de muitas das conclusões estatísticas torna-se suspeito. O gráfico de autocorrelação é uma excelente maneira de verificar essa aleatoriedade. Um conto de correlograma Na análise de dados, geralmente começamos com as propriedades estatísticas descritivas dos dados da amostra (por exemplo, média, desvio padrão, distorção, curtose, distribuição empírica, etc.). Estes cálculos são certamente úteis, mas não explicam a ordem das observações nos dados da amostra. A análise de séries temporais exige que prestemos atenção à ordem e, portanto, requer um tipo diferente de estatística descritiva: estatística descritiva de séries temporais ou simplesmente análise de correlograma. A análise do correlograma examina a dependência tempo-espacial dentro dos dados da amostra e concentra-se na autocovariância empírica, auto-correlação e testes estatísticos relacionados. Finalmente, o correlograma é uma pedra angular para identificar o modelo ea (s) ordem (s) do modelo. O que faz um enredo para correlação automática (ACF) e / ou auto-correlação parcial (PACF) nos dizer sobre a dinâmica do processo subjacente Este tutorial é um pouco mais teórico do que tutoriais anteriores na mesma série, mas vamos fazer o nosso melhor para conduzir as intuições Casa para você. Primeiro, comece bem com uma definição para a função de auto-correlação, simplifique-a e investigue o ACF teórico para um tipo de processo ARMA. Função de auto-correlação (ACF) Por definição, a correlação automática para o atraso k é expressa da seguinte forma: Este gráfico ACF também é infinito, mas a forma real pode seguir padrões diferentes. Um processo AR pode ser representado por um processo MA infinito O AR tem memória infinita. Mas o efeito diminui ao longo do tempo As funções de suavização exponencial são casos especiais de um processo AR e também possuem memória infinita Exemplo 4 - Modelo ARMA (p, q) Até agora, vemos o que o traçado ACF de um processo MA puro e AR Como, mas que sobre uma mistura dos dois modelos Pergunta: por que precisamos considerar um modelo de mistura como ARMA, uma vez que podemos representar qualquer modelo como um MA ou um modelo AR Resposta: estamos tentando reduzir o requisito de memória eo Complexidade do processo através da super-imposição dos dois modelos. Usando a fórmula de auto-correlação MA (q), podemos calcular as funções de auto-correlação ARMA (p, q) para sua representação MA. Isso está ficando intenso Alguns de vocês podem estar se perguntando por que não usamos VAR ou uma representação de espaço de estado para simplificar as notações. Eu fiz questão de permanecer no domínio do tempo e evitei quaisquer novas idéias ou truques de matemática, uma vez que não serviriam nossas intenções aqui: Impor a ordem ARMA exata usando os valores ACF por si mesmos, o que não é nada preciso. Intuição: Os valores ACF podem ser considerados como os valores dos coeficientes do modelo MA equivalente. Intuição: A variância condicional não tem barreira (efeito) nos cálculos de auto-correlação. Intuição: A média de longo prazo também não tem qualquer barreira (efeito) nas auto-correlações. Função de Auto-Correlação Parcial (PACF) Até agora, vimos que a identificação da ordem do modelo (MA ou AR) é não-trivial para casos não-simples, então precisamos de outra ferramenta de função de auto-correlação parcial (PACF). A função de auto-correlação parcial (PACF) desempenha um papel importante na análise de dados visando identificar a extensão do atraso em um modelo autorregressivo. A utilização desta função foi introduzida como parte da abordagem de Box-Jenkins para a modelagem de séries temporais, onde se pode determinar os atrasos adequados p num modelo AR (p) ou num modelo ARIMA (p, d, q) As funções de auto-correlação parcial. Simplificando, o PACF para o lag k é o coeficiente de regressão para o k-ésimo termo, como mostrado abaixo: O PACF assume que o modelo subjacente é um AR (k) e usa regressões múltiplas para calcular o último coeficiente de regressão. Rápida intuição: os valores de PACF podem ser considerados (grosso modo) como os valores de coeficientes do modelo AR equivalente. Como o PACF é útil para nós Supondo que temos um processo AR (p), então o PACF terá valores significativos para os primeiros p lags e cairá para zero depois. E quanto ao processo MA O processo MA tem valores PACF não-zero para um (teoricamente) número infinito de defasagens. Exemplo 4: MA (1)

No comments:

Post a Comment